ALMA revela que orígenes de agua en planeta en formación se remontarían a medio interestelar

La observación del agua presente en el disco que se forma alrededor de la protoestrella V883 Ori ha aportado nuevas claves sobre los procesos de formación de los cometas y los planetesimales de nuestro propio Sistema Solar

Un equipo científico detectó agua en el disco circumestelar de una protoestrella cercana gracias al Atacama Large Millimeter/submillimeter Array (ALMA). Es la primera vez que se observa agua depositándose en un disco protoplanetario sin que se produzcan cambios significativos en su composición. Este hallazgo permite suponer que el agua presente en nuestro Sistema Solar se formó miles de millones de años antes que el Sol. Los resultados del estudio se publicaron hoy en la revista Nature.

V883 Orionis es una protoestrella situada a unos 1.305 años luz de la Tierra, en la constelación de Orión. Su observación permitió a la comunidad científica encontrar un vínculo probable entre el agua presente en el medio interestelar y el agua de nuestro Sistema Solar, al confirmarse que tienen una composición similar.

“Podemos pensar en la trayectoria del agua a través del Universo como un sendero. Conocemos los paraderos, que son los planetas y cometas donde hay agua, pero queríamos remontar su rastro hasta los orígenes del agua”, cuenta John Tobin, astrónomo del Observatorio Radioastronómico Nacional (NRAO, en su sigla en inglés) de la Fundación Nacional de Ciencia de Estados Unidos (NSF) y autor principal del artículo. “Hasta ahora, podíamos relacionar la Tierra con los cometas y las protoestrellas con el medio interestelar, pero no podíamos establecer un vínculo entre las protoestrellas y los cometas. Eso cambió con V883 Ori, y ahora sabemos que las moléculas de agua de ese sistema y las de nuestro Sistema Solar tienen proporciones similares de deuterio e hidrógeno”.

Observar agua en los discos circumestelares de las protoestrellas es una tarea compleja, puesto que en la mayoría de los sistemas el agua se encuentra congelada. Al observar protoestrellas, la comunidad científica busca líneas de nieve, o líneas de hielo, donde el agua hace la transición entre el hielo y el gas, que se puede observar en mayor detalle mediante radioastronomía. “Si la línea de nieve está demasiado cerca de la estrella, no hay agua suficiente en estado gaseoso como para detectarla fácilmente, y el polvo del disco puede tapar buena parte de las emisiones del agua. Si la línea de nieve se encuentra lo suficientemente lejos de la estrella, puede haber vapor de agua detectable, y eso es lo que se ha observado en V883 Ori”, explica John Tobin, quien agrega que esta investigación solo fue posible gracias a esta característica única de la protoestrella.

El disco de V883 Ori es bastante masivo y tiene la temperatura justa que permite que el agua pase de estado sólido a gaseoso, de ahí que sea ideal para estudiar el crecimiento y la evolución de los sistemas solares en longitudes de onda de radio.

“Esta observación demuestra la extraordinaria capacidad que tiene ALMA para estudiar algo tan importante para la vida en la Tierra: el agua”, celebra Joe Pesce, Program Officer de la NSF para ALMA. “Dilucidar procesos importantes para la vida en la Tierra observándolos en regiones más distantes de la galaxia también nos ayuda a entender mejor cómo funciona la naturaleza en general y conocer los procesos que permitieron a nuestro Sistema Solar convertirse en lo que es hoy”.

Para establecer una relación entre el agua del disco protoplanetario de V883 Ori y el agua de nuestro Sistema Solar, el equipo de investigación estudió su composición usando los receptores ultrasensibles de Banda 5 (1,6 mm) y Banda 6 (1,3 mm) y descubrió que su composición se mantiene relativamente inalterada en cada etapa de formación de un sistema solar: de la protoestrella al disco protoplanetario y los cometas. “Esto significa que el agua de nuestro Sistema Solar se formó mucho antes que el Sol, los planetas y los cometas. Ya sabíamos que hay mucha agua en el medio interestelar. Los resultados obtenidos ahora demuestran que esa agua se incorporó directamente al Sistema Solar durante su formación”, afirma Merel van ‘t Hoff, astrónoma de la Universidad de Michigan y coautora del artículo. “Esto es muy emocionante, porque es un indicio de que otro sistemas planetarios también deben de haber recibido grandes cantidades de agua”.

Es fundamental entender bien el papel del agua en el desarrollo de cometas y planetesimales para saber cómo se formó exactamente nuestro propio Sistema Solar. Aunque se cree que el Sol se formó en un denso cúmulo de estrellas, mientras que V883 Ori se encuentra relativamente aislada, en una zona sin estrellas, los dos astros tienen una característica fundamental en común: ambos se formaron en nubes moleculares gigantes.

“Sabemos que la mayor parte del agua del medio interestelar se deposita en forma de hielo en la superficie de diminutos granos de polvo presentes en las nubes. Cuando estas nubes colapsan por efecto de su propia gravedad y forman nuevas estrellas, el agua se deposita en los discos que las rodean. Con el tiempo, los discos evolucionan y los granos de polvo congelados se aglomeran hasta formar un sistema solar con planetas y cometas”, explica Margot Leemker, astrónoma de la Universidad de Leiden y coautora del artículo. “Hemos demostrado que el agua que se forma en las nubes pasa por estas etapas prácticamente sin alterarse. De esa forma, al analizar el agua del disco V883 Ori, básicamente miramos hacia el pasado y vemos cómo era nuestro propio Sistema Solar en su juventud. John Tobin agrega: “Hasta ahora la cadena evolutiva del agua en nuestro Sistema Solar estaba incompleta. V883 Ori aportó el eslabón faltante, y ahora conocemos todo el linaje del agua, desde los cometas y las protoestrellas hasta el medio interestelar”.

Información adicional

“Deuterium-enriched water ties planet-forming disks to comets and protostars” (‘Agua rica en deuterio permite relacionar discos protoplanetarios con cometas y protoestrellas’), J. Tobin et al., 8 de marzo de 2023, Naturehttps://doi.org/10.1038/s41586-022-05676-z

El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Consejo Nacional de Ciencia y Tecnología de Taiwán (NSTC), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).

La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.

Imágenes

V883 Ori es una protoestrella única, cuya temperatura es perfecta para que el agua del disco circumestelar se convierta en gas, lo que permite a la comunidad radioastronómica rastrear los orígenes del agua. Las nuevas observaciones realizadas con el Atacama Large Millimeter/submillimeter Array (ALMA) aportaron los primeros indicios que permiten suponer que el agua de nuestro Sistema Solar proviene del mismo lugar que el agua presente en los discos de las demás protoestrellas del Universo: el medio interestelar. ALMA (ESO/NAOJ/NRAO), B. Saxton (NRAO/AUI/NSF)

 

El agua de los discos circumestelares que rodean las protoestrellas suele estar congelada y a veces se extiende a lo largo de grandes distancias, alejándose de la estrella. En el caso de V883 Ori, la línea de nieve se extiende por 80 UA desde la estrella, es decir, cerca de 80 veces la distancia que separa la Tierra del Sol. No obstante, la temperatura de V883 Ori es lo suficientemente elevada como para que buena parte del hielo del disco se convierta en gas, que los instrumentos radioastronómicos son capaces de observar en detalle. Las nuevas observaciones realizadas con el Atacama Large Millimeter/submillimeter Array (ALMA) revelaron que el agua del disco de V883 Ori tiene la misma composición básica que el agua presente en los astros de nuestro Sistema Solar. De esto se desprende que el agua de nuestro Sistema Solar se formó miles de millones de años antes que el Sol, en el medio interestelar.
Créditos: ALMA (ESO/NAOJ/NRAO), J. Tobin, B.Saxton (NRAO/AUI/NSF)

Mientras estudiaba los orígenes del agua de nuestro Sistema Solar, un equipo científico observó V883 Orionis, una protoestrella única situada a 1.305 años luz de la Tierra. A diferencia de lo que ocurre en otras protoestrellas, el disco circumestelar de V883 Ori tiene una temperatura que convirtió el agua en gas, lo que permite a la comunidad científica estudiar su composición usando radiotelescopios como el Atacama Large Millimeter/submillimeter Array (ALMA). Las radioobservaciones de la protoestrella revelaron la presencia de gas molecular (en azul), agua (naranja) y continuo de polvo (verde), de lo cual se desprende que el agua de esta protoestrella es extremadamente similar al agua presente en astros de nuestro Sistema Solar y podría tener orígenes similares. ALMA (ESO/NAOJ/NRAO), J. Tobin, B. Saxton (NRAO/AUI/NSF)
V883 Orionis es una protoestrella situada a unos 1.305 años luz de la Tierra, en la constelación de Orión. UAI/Sky & Telescope

Máseres de hidrógeno revelan nuevos secretos de una estrella masiva a científicos de ALMA

Equipo científico usó líneas únicas de recombinación de hidrógeno en ondas de radio de MWC 349A para revelar chorros colimados ocultos

Mientras usaban el Atacama Large Millimeter/submillimeter Array (ALMA) para estudiar los máseres presentes alrededor de la inusual estrella MWC 349A, un equipo científico descubrió algo inesperado: un desconocido chorro de material emanando del disco de gas de la estrella a velocidades inverosímiles. Se cree, además, que el chorro es generado por intensas fuerzas magnéticas presentes alrededor de la estrella. El hallazgo podría ayudar a la comunidad científica a entender la naturaleza y la evolución de las estrellas masivas, y entender cómo los máseres de hidrógeno se forman en el espacio. Las nuevas observaciones se presentaron hoy durante una conferencia de prensa en la asamblea n.o 241 de la Sociedad Astronómica de Estados Unidos (AAS, en su sigla en inglés) en Seattle (Washington, Estados Unidos).

Las características únicas de MWC 349A, que se encuentra a unos 3.900 años luz de la Tierra, en la constelación del Cisne, reviste especial interés para la investigación científica en longitudes de onda ópticas, infrarrojas y de radio. Esta estrella masiva, cuya masa es unas 30 veces mayor a la de nuestro Sol, es una de las fuentes de radio más luminosas del cielo, y uno de los pocos objetos conocidos que tienen máseres de hidrógeno. Estos máseres amplifican las emisiones de radio en microondas, lo cual ayuda a estudiar procesos que suelen ser demasiado pequeños para observar. Así fue como el equipo científico pudo mapear el disco de MWC 349A por primera vez.

“Un máser es como un láser natural”, explica Sirina Prasad, asistente de investigación y estudiante de pregrado del Centro de Astrofísica Harvard & Smithsonian (CfA), y autora principal del artículo. “Es un área del espacio que emite una luz realmente intensa. Podemos verla y rastrearla hasta su origen, y esto nos ayuda a entender qué está sucediendo realmente”.

Gracias a la capacidad de resolución de la Banda 6 de ALMA, desarrollada por el Observatorio Radioastronómico Nacional (NRAO) de la Fundación Nacional de Ciencia de Estados Unidos, el equipo pudo usar los máseres para revelar estructuras desconocidas del entorno inmediato de la estrella. Qizhou Zhang, astrofísico sénior de CfA e investigador principal del proyecto, agrega: “Usamos máseres generados por hidrógeno para estudiar las estructuras físicas y dinámicas del gas que rodea MWC 349A, y descubrimos un disco de gas plano con un diámetro similar al del Sistema Solar. Esto confirma que la estrella tiene una estructura prácticamente horizontal. También detectamos un veloz chorro escondido entre los vientos que soplan alejándose de la estrella”. 

El chorro observado eyecta material hacia fuera de la estrella a una impresionante velocidad de 500 km por segundo, equivalente a viajar desde San Diego (California) hasta Phoenix (Arizona) literalmente en un abrir y cerrar de ojos. De acuerdo con el equipo de investigación, lo más probable es que para que un chorro sea tan veloz haya una fuerza magnética que lo impulse. En el caso de MWC 349A, podría tratarse de un viento magnetohidrodinámico, un tipo de viento cuyo movimiento es determinado por la interacción entre el campo magnético de la estrella y los gases presentes en el disco que la rodea.

“Hasta ahora pensábamos que MWC 349A estaba rodeada por un disco giratorio y vientos fotoevaporados. Aún no se había detectado un chorro colimado en este sistema. Aunque no sabemos a ciencia cierta de dónde viene o cómo se produce, podría ser generado por vientos magnetohidrodinámicos, y en ese caso el campo magnético sería responsable de eyectar material giratorio del sistema”, agrega Sirina Prasad. “Esto podría ayudarnos a entender mejor las dinámicas disco-viento de MWC 349A y la interacción entre los discos circumestelares, los vientos y los chorros de otros sistema estelares”.

El Observatorio Radioastronómico Nacional de Estados Unidos (NRAO) es un establecimiento de la Fundación Nacional de Ciencia de Estados Unidos operado por Associated Universities Inc. en virtud de un acuerdo de cooperación.

Equipo científico de ALMA detecta pareja de agujeros negros cenando juntos en galaxias cercanas en colisión

Mientras estudiaban una dupla de galaxias en colisión cercanas con el Atacama Large Millimeter/submillimeter Array (ALMA) —un observatorio internacional coadministrado por el Observatorio Radioastronómico Nacional (NRAO, en su sigla en inglés) de la Fundación Nacional de Ciencia de Estados Unidos—, un equipo científico descubrió dos agujeros negros supermasivos creciendo juntos cerca del centro de la nueva galaxia en ciernes. Es la primera vez que se observa en longitudes de onda múltiples a dos mastodontes hambrientos como estos tan cerca el uno del otro. El estudio también reveló que los agujeros negros binarios y las galaxias en colisión que los originan pueden ser fenómenos sorprendentemente comunes en el Universo. Los resultados de esta investigación se publicaron hoy en la revista The Astrophysical Journal Letters se presentaron durante una conferencia de prensa en la asamblea n.o 241 de la Sociedad Astronómica de Estados Unidos (AAS, en su sigla en inglés) en Seattle (Washington, Estados Unidos).

UGC4211, ubicada a solo 500 millones de años luz de la Tierra, en la constelación de Cáncer, es una candidata ideal para estudiar las etapas finales de las fusiones de galaxias, que suelen ocurrir con mayor frecuencia en el Universo distante y, por consiguiente, pueden ser difíciles de observar. Al usar los receptores de 1,3 mm altamente sensibles de ALMA para observar las profundidades de sus núcleos galácticos activos (áreas compactas y sumamente luminosas de las galaxias generadas por la acreción de materia alrededor de los agujeros negros centrales), el equipo científico descubrió no uno sino dos agujeros negros que devoraban frenéticamente los subproductos de la fusión. Y para su sorpresa, ambos estaban dándose el festín muy cerca el uno del otro: a tan solo 750 años luz de distancia.

“De las simulaciones se había desprendido que la mayoría de los agujeros negros binarios de las galaxias cercanas debían ser objetos inactivos, como suele suceder, en vez de agujeros negros en pleno crecimiento como los que observamos”, señala Michael Koss, investigador sénior de Eureka Scientific y autor principal del estudio. 

Michael Koss agregó que ALMA resultó ser una herramienta revolucionaria y que observar dos agujeros negros tan cerca el uno del otro en el Universo cercano podría allanar el camino hacia nuevos estudios sobre este sorprendente fenómeno. “ALMA es un instrumento único por ser capaz de observar a través de grandes nubes de polvo y gas y alcanzar una resolución espacial muy alta al observar objetos que se encuentran cerca unos de otros. Hemos identificado a una de las parejas de agujeros negros más estrecha que conozcamos en una galaxia en colisión, y como sabemos que estas fusiones galácticas son mucho más comunes en el Universo distante, podemos suponer que estos agujeros negros binarios también podrían ser mucho más comunes de lo que se creía”. 

Si estas parejas de agujeros negros cercanos resultan ser más comunes, como plantean Michael Koss y su equipo, podría haber implicaciones importantes para las futuras detecciones de ondas gravitacionales.

Ezequiel Treister, astrónomo de la Universidad Católica de Chile y coautor del estudio, afirma: “Puede haber muchas parejas de agujeros negros supermasivos en pleno crecimiento en los centros de las galaxias que aún no hemos logrado identificar. De ser así, en un futuro cercano observaremos frecuentes ondas gravitacionales generadas por las fusiones de estos objetos por todo el Universo”.

La combinación de los datos de ALMA con observaciones en longitudes de onda múltiples de telescopios potentes como Chandra, Hubble, el Very Large Telescope de la Organización Europea para la Investigación Astronómica en el Hemisferio Austral (ESO) y Keck aportó un gran nivel de detalle a este fascinante descubrimiento. “Cada longitud de onda pinta una parte del panorama. Mientras las imágenes ópticas obtenidas con observatorios terrestres nos mostraron la totalidad de la galaxia en colisión, el telescopio Hubble nos permitió observar las regiones nucleares en alta resolución. Y las observaciones en rayos X revelaron que hay al menos un núcleo galáctico activo en el sistema”, explica Ezequiel Treister. “ALMA nos mostró la ubicación exacta de estos dos agujeros negros supermasivos y glotones en pleno crecimiento. Toda esta información nos brindó una idea más clara de cómo las galaxias como la nuestra se han convertido en lo que son ahora y cómo seguirán evolucionando”. 

Hasta ahora, los científicos habían estudiado principalmente las primeras etapas de fusión de las galaxias. La nueva investigación podría revolucionar lo que sabemos sobre la inminente fusión de la Vía Láctea con la galaxia vecina Andrómeda. Michael Koss afirma: “La colisión de la Vía Láctea con Andrómeda está recién empezando, pues se prevé que ocurrirá dentro de unos 4.500 millones de años. Lo que observamos recién es una fuente en las últimas etapas de colisión, un presagio de lo que sucederá y una muestra de la relación entre el crecimiento y la fusión de agujeros negros y la eventual generación de ondas gravitacionales”.

“Este fascinante hallazgo pone de manifiesto el poder de ALMA y muestra cómo la observación en longitudes de onda múltiples puede producir resultados importantes que profundizan nuestros conocimientos sobre el Universo y de fenómenos como los agujeros negros, los núcleos galácticos activos y las evoluciones de las galaxias, entre otros”, celebra Joe Pesce, NSF Program Director del Observatorio Radioastronómico Nacional de Estados Unidos. “Con el advenimiento de los detectores de ondas gravitacionales tenemos la oportunidad de incrementar aún más nuestra capacidad de observación combinando todas estas herramientas. Me parece que el potencial de descubrimientos no tiene límites”.

El Observatorio Radioastronómico Nacional de Estados Unidos (NRAO) es un establecimiento de la Fundación Nacional de Ciencia de Estados Unidos operado por Associated Universities Inc. en virtud de un acuerdo de cooperación.

El artículo original puede ser encontrado en: https://iopscience.iop.org/article/10.3847/2041-8213/aca8f0 .