Nota: Este artículo es un trabajo colaborativo de Ken Kellermann, Ellen Bouton, Heather Cole y Jeff Hellerman.
Antes de 1933, todo lo que sabíamos sobre el universo provenía de observaciones realizadas a en la pequeña región óptica del espectro electromagnético. Todo eso cambió en gran parte gracias a Karl Jansky.
Jansky no se propuso desarrollar un nuevo campo de la astronomía. Mientras trabajaba para AT&T Bell Laboratories, se le asignó la tarea de comprender cuál era la fuente de la interferencia en las comunicaciones telefónicas transatlánticas. Utilizando un arreglo giratorio en 21 MHz, durante un período de tres años, Jansky rastreó meticulosamente el origen de este ruido hasta el centro de la Vía Láctea.
La mayoría de los registros y notas de Karl Jansky en Bell Labs se perdieron o fueron destruidos. Uno de los pocos registros que quedan de sus observaciones es esta serie de escaneos realizados el 16 de septiembre de 1932, que publicó en la revista “Proceedings of the Institute of Radio Engineers”, vol. 21, 1387 (1933). Los picos en los trazados de su grabadora muestran el aumento del ruido cuando el haz de su antena pasó por la Vía Láctea tres veces por hora.
Aún cuando las anotaciones de Jansky se perdieron, la correspondencia que mantenía regularmente con sus padres nos permite seguir al detalle cómo finalmente logró llegar a la fuente del débil ruido.
Registro de las primeras observaciones de Jansky. Crédito: Karl Jansky
El 18 de enero de 1932, Karl Jansky escribió: “Lo peculiar de esta estática es que la dirección desde la que viene cambia gradualmente [sic] y lo que es más interesante siempre proviene de una dirección que es la misma o casi la misma dirección a la cual se encuentra el Sol desde la antena”
Pero para marzo, Jansky estaba confundido, durante enero y febrero, la dirección del ruido se había movido gradualmente hasta que ya no coincidía con el Sol.
Distraído por sus otras responsabilidades en el laboratorio, pasó casi un año antes de que Jansky pudiera volver a su “ruido estelar”. El 15 de febrero de 1933 escribió a su padre lo siguiente:
“Mis registros muestran que el tipo de silbido estático mencionado en mi artículo anterior no proviene del Sol como sugerí en ese artículo, sino de una dirección fija en el espacio. La evidencia que tengo ahora es muy concluyente y, creo, muy sorprendente”.
El 27 de abril de 1933, Jansky hizo una breve presentación de 12 minutos en la reunión del Comité Nacional de EE. UU. para la Unión Internacional para la Ciencia en Radio (URSI). El jefe de Jansky en Bell Labs, Harald Friis, presionó a Jansky para que no hiciera una afirmación extraordinaria, por lo que el artículo tenía el título inocuo, “Una nota sobre el ruido atmosférico tipo silbido”, la que, según escribió a su padre, «no significaba nada para nadie». La semana siguiente, la edición del 5 de mayo de 1933 de The New York Times llevaba el titular “Ondas de radio desde el centro de la Galaxia”.
Fuera de su trabajo, Jansky era un atleta entusiasta y se destacó en muchos deportes y pasatiempos. Actuó como ala derecha en el equipo de hockey sobre hielo Badgers de la Universidad de Wisconsin. Tuvo el promedio de bateo más alto como receptor en el equipo de softball Bell Labs y fue el campeón de tenis de mesa de Nueva Jersey usando una raqueta casera. Disfrutaba del golf, el tenis, los bolos, la vela y el esquí, y era un jugador competitivo de bridge y un apasionado observador de aves. El descubrimiento de Karl Jansky de la emisión de radio cósmica en 1933 sentó las bases para los muchos descubrimientos posteriores en la radioastronomía que han cambiado nuestra comprensión del universo y sus componentes. Estos descubrimientos incluyen radiogalaxias, cuásares, púlsares, el fondo cósmico de microondas, lentes gravitacionales, moléculas interestelares, másers cósmicos, materia oscura, planetas extrasolares y la primera evidencia observacional de radiación gravitacional y evolución cósmica.
Después de la publicación de su descubrimiento de la emisión de radio cósmica, Jansky solo tuvo una oportunidad limitada de continuar con esta investigación, ya que su tiempo fue ocupado cada vez más por otras prioridades de Bell Labs. En 1949, Jansky fue nominado para el Premio Nobel de Física, pero esto fue antes de que la importancia de su trabajo fuera ampliamente apreciada. Sin embargo, su legado ha sido reconocido de muchas maneras.
En 1973, la Asamblea General de la Unión Astronómica Internacional (IAU por sus siglas en inglés) resolvió que se adoptara el nombre ‘Jansky’, abreviado ‘Jy’ como unidad de densidad de flujo en radioastronomía y que esta unidad, igual a 10-26 Wm-2Hz-1, se incorporara al sistema internacional de unidades físicas. Aunque originalmente tenía la intención de definir sólo la unidad de densidad de flujo en radio, Jansky (Jy) se ha convertido en la unidad de facto para las mediciones en todo el espectro electromagnético.
Las conferencias anuales Karl Jansky fueron establecidas por los fideicomisarios de AUI y NRAO para reconocer las contribuciones sobresalientes al avance de la radioastronomía.
Para obtener más información sobre Karl Jansky y la historia de la radioastronomía, consulte los archivos de NRAO/AUI: https://www.nrao.edu/archives/ (en inglés).
Por primera vez, un equipo de astrónomos y astrónomas ha observado, en la misma imagen, la sombra del agujero negro del centro de la galaxia Messier 87 (M87) y el potente chorro expulsado. Las observaciones se realizaron en 2018 con telescopios del Global Millimeter VLBI Array (GMVA), el Atacama Large Millimeter/submillimeter Array (ALMA) y el Telescopio de Groenlandia (GLT). Gracias a esta nueva imagen, la comunidad astronómica puede comprender mejor cómo los agujeros negros lanzan chorros tan energéticos.
“Anteriormente habíamos visto tanto el agujero negro como el chorro en imágenes separadas, pero ahora hemos tomado una fotografía panorámica del agujero negro junto con su chorro en una nueva longitud de onda”, dice Ru-Sen Lu, del Observatorio Astronómico de Shanghai y líder de un Grupo de Investigación Max Planck en la Academia de Ciencias de China. Se cree que el material circundante cae en el agujero negro en un proceso conocido como acreción. Pero nadie lo ha fotografiado directamente. «El anillo que hemos observado antes aparece más grande y más grueso a una longitud de onda de observación de 3,5 mm. Esto muestra que el material que cae en el agujero negro produce una emisión adicional que ahora se aprecia en la nueva imagen. Esto nos da una visión más completa de los procesos físicos que actúan cerca del agujero negro”, agregó.
La participación de ALMA y GLT en las observaciones de GMVA y el aumento resultante en la resolución y sensibilidad de esta red intercontinental de telescopios ha hecho posible obtener imágenes de la estructura en forma de anillo en M87 por primera vez en la longitud de onda de 3,5 mm. El diámetro del anillo medido por el GMVA es de 64 microarcosegundos, que corresponde al tamaño de un pequeño anillo de luz para selfies (13 cm) visto por un astronauta en la Luna mirando hacia la Tierra. Este diámetro es un 50 por ciento más grande que lo que se vio en las observaciones del Event Horizon Telescope a 1,3 mm, de acuerdo con las expectativas de emisión de plasma relativista en esta región.
«Con las capacidades de generación de imágenes muy mejoradas al agregar ALMA y GLT en las observaciones de GMVA, hemos obtenido una nueva perspectiva. De hecho, vemos el chorro de tres crestas que conocíamos de las observaciones anteriores de VLBI», dice Thomas Krichbaum del Instituto Max Planck para Radio Astronomía (MPIfR) en Bonn.»Pero ahora podemos ver cómo el chorro emerge del anillo de emisión alrededor del agujero negro supermasivo central y podemos medir el diámetro del anillo también en otra longitud de onda (más larga)».
«ALMA ha demostrado una vez más ser un actor clave en las observaciones de mm-VLBI. Su tamaño y ubicación geográfica se han unido a las estaciones de GMVA en todo el mundo para brindar por primera vez una visión del chorro y el flujo de acreción en M87 en una sola imagen” explica Hugo Messias, líder de observaciones VLBI en ALMA y coautor en este estudio. “Esto tiene tremendas implicaciones para nuestro conocimiento, ya que la información obtenida es más que una imagen, también nos permite inferir a qué velocidad está creciendo el agujero negro y de dónde proviene el chorro, sin embargo, es necesario observar otros casos y estudiarlos para obtener conclusiones estadísticamente representativas sobre agujeros negros y chorros, de ahí la necesidad de las observaciones VLBI anuales a las que se suma ALMA”.
La luz de M87 es producida por la interacción entre electrones altamente energéticos y campos magnéticos, un fenómeno llamado radiación de sincrotrón. Las nuevas observaciones, a una longitud de onda de 3,5 mm, revelan más detalles sobre la ubicación y la energía de estos electrones. También nos dicen algo sobre la naturaleza del propio agujero negro: no tiene mucha hambre. Consume materia a un ritmo bajo, convirtiendo solo una pequeña fracción en radiación. Keiichi Asada de la Academia Sínica, Instituto de Astronomía y Astrofísica, explica: «Para comprender el origen físico del anillo más grande y más grueso, tuvimos que usar simulaciones por computadora para probar diferentes escenarios. Como resultado, concluimos que la mayor extensión del anillo está asociado con el flujo de acreción”.
Kazuhiro Hada, del Observatorio Astronómico Nacional de Japón, agrega: «También encontramos algo sorprendente en nuestros datos: la radiación de la región interna cercana al agujero negro es más amplia de lo que esperábamos. Esto podría significar que hay algo más que gas cayendo. También podría haber un viento soplando, causando turbulencia y caos alrededor del agujero negro”.
La búsqueda para aprender más sobre M87 no ha terminado, ya que más observaciones y una flota de poderosos telescopios continúan descubriendo sus secretos. «Las observaciones futuras en longitudes de onda milimétricas estudiarán la evolución temporal del agujero negro M87 y proporcionarán una vista policromática del agujero negro con imágenes de múltiples colores en luz de radio», dice Jongho Park del Instituto de Ciencias Espaciales y Astronomía de Corea.
ALMA participa en una nueva campaña de observación VLBI del 12 de abril al 10 de mayo de 2023 para estudiar más a fondo M87 y otras fuentes.
Información adicional
Este trabajo de investigación se ha presentado en el artículo científico «A ring-like accretion structure in M87 connecting its black hole and jet», publicado en la revista Nature (doi: 10.1038/s41586-023-05843-w).
El equipo está formado por: Ru-Sen Lu (Observatorio Astronómico de Shanghai, República Popular China [Shanghai]; Laboratorio Key de Radioastronomía, República Popular China [KLoRA]; Instituto Max-Planck de Radioastronomía, Alemania [MPIfR]); Keiichi Asada (Instituto de Astronomía y Astrofísica, Academia Sinica, Taiwan, ROC [IoAaA]); Thomas P. Krichbaum (MPIfR); Jongho Park (IoAaA; Instituto de Astronomía y Ciencias Espaciales de Corea, República de Corea [KAaSSI]); Fumie Tazaki (Departamento de Desarrollo de Tecnologías de Simulación, Tokyo Electron Technology Solutions Ltd., Japón; Observatorio VLBI Mizusawa, Observatorio Astronómico Nacional de Japón, Japón [Mizusawa]); Hung-Yi Pu (Departamento de Física, Universidad Normal Nacional de Taiwán, Taiwán, ROC; IoAaA; Centro de Astronomía y Gravitación, Universidad Normal Nacional de Taiwán, Taiwán, ROC); Masanori Nakamura (Instituto Nacional de Tecnología, Hachinohe College, Japón; IoAaA); Andrei Lobanov (MPIfR); Kazuhiro Hada (Mizusawa; Departamento de Ciencias Astronómicas, The Graduate University for Advanced Studies, Japón); Kazunori Akiyama (Iniciativa Black Hole de la Universidad de Harvard, EE.UU.; Observatorio Haystack del Instituto de Tecnología de Massachusetts, EE.UU. [Haystack]; Observatorio Astronómico Nacional de Japón, Japón [NAOoJ]); Jae-Young Kim (Departamento de Astronomía y Ciencias Atmosféricas, Universidad Nacional de Kyungpook, República de Korea; KAaSSI; MPIfR); Iván Martí-Vidal (Departamento de Astronomía y Astrofísica, Universidad de Valencia, España; Observatorio Astronómico, Universidad de Valencia, España); José L. Gómez (Instituto de Astrofísica de Andalucía-CSIC, España [IAA]); Tomohisa Kawashima (Instituto para la Investigación en Rayos Cósmicos, The University of Tokyo, Japón); Feng Yuan (Shanghai; Laboratorio Key para la Investigación en Galacias y Cosmología, Academia de Ciencias de China, República Popular China; Escuela de Astronomía y Ciencias Espaciales, Universidad de la Academia de Ciencias China, República Popular China [SoAaSS]); Eduardo Ros (MPIfR); Walter Alef (MPIfR); Silke Britzen (MPIfR); Michael Bremer (Instituto de Radioastronomía Milimétrica, Francia [IRAMF]); Avery E. Broderick (Departamento de Física y Astronomía, Universidad de Waterloo, Canadá [Waterloo]; Centro de Astrofísica de Waterloo, Universidad de Waterloo, Canadá; Instituto Perimeter de Física Teórica, Canadá); Akihiro Doi (Instituto de Ciencias Espaciales y Aeronáutica, Agencia de Exploración Aeroespacial Japonesa, Japón; Departamento de Ciencias Espaciales y Astronáutica, SOKENDAI, Japón [SOKENDAI]); Gabriele Giovannini (Departamento de Física y Astronomía, Universidad de Bolonia, Italia; Instituto de Radio Astronomía, INAF, Bolonia, Italia, [INAF]); Marcello Giroletti (INAF); Paul T. P. Ho (IoAaA); Mareki Honma (Mizusawa; Hachinohe; Departamento de Astronomía, La Universidad de Tokio, Japón); David H. Hughes (Instituto Nacional de Astrofísica, México); Makoto Inoue (IoAaA); Wu Jiang (Shanghai); Motoki Kino (NAOoJ; Universidad Kogakuin de Tecnología e Ingeniería, Japón); Shoko Koyama (Universidad de Niigata, Japón; IoAaA); Michael Lindqvist (Departamento de Espacio, Tierra y Medio Ambiente, Universidad Chalmers de Tecnología, Suecia [Chalmers]); Jun Liu (MPIfR); Alan P. Marscher (Instituto para la Investigación en Astrofísica, Universidad de Boston, EE.UU.); Satoki Matsushita (IoAaA); Hiroshi Nagai (NAOoJ; SOKENDAI); Helge Rottmann (MPIfR); Tuomas Savolainen (Departamento de Electrónica y Nanoingeniería, Universidad de Aalto, Finlandia; Radio Observatorio de Metsähovi, Finlandia [Metsähovi]; MPIfR); Karl-Friedrich Schuster (IRAMF); Zhi-Qiang Shen (Shanghai; KLoRA); Pablo de Vicente (Observatorio de Yebes, Spain [Yebes]); R. Craig Walker (Observatorio Nacional de Radioastronomía, Socorro, EE.UU.); Hai Yang (Shanghai; SoAaSS); J. Anton Zensus (MPIfR); Juan Carlos Algaba (Departamento de Física, Universidad Malaya, Malasia); Alexander Allardi (Universidad de Vermont, EE.UU.); Uwe Bach (MPIfR); Ryan Berthold (Observatorio de Asia del Este, EE.UU. [EAO]); Dan Bintley (EAO); Do-Young Byun (KAaSSI; Universidad de Ciencia y Tecnología, Daejeon, República de Corea); Carolina Casadio (Instituto de Astrofísica, Heraklion, Grecia; Departamento de Física, Universidad de Creta, Grecia); Shu-Hao Chang (IoAaA); Chih-Cheng Chang (Instituto Nacional Chung-Shan de Ciencia y Tecnología, Taiwán, ROC [Chung-Shan]); Song-Chu Chang (Chung-Shan); Chung-Chen Chen (IoAaA); Ming-Tang Chen (Instituto de Astronomía y Astrofísica, Academia Sinica, EE.UU. [IAAAS]); Ryan Chilson (IAAAS); Tim C. Chuter (EAO); John Conway (Chalmers); Geoffrey B. Crew (Haystack); Jessica T. Dempsey (EAO; Astron, Países Bajos [Astron]); Sven Dornbusch (MPIfR); Aaron Faber (Universidad del Oeste, Canadá); Per Friberg (EAO); Javier González García (Yebes); Miguel Gómez Garrido (Yebes); Chih-Chiang Han (IoAaA); Kuo-Chang Han (Centro de Desarrollo de Sistemas, Instituto Nacional Chung-Shan de Ciencia y Tecnología, Taiwán, ROC); Yutaka Hasegawa (universidad Metropolitana de Osaka, Japón [Osaka]); Rubén Herrero-Illana (Observatorio Europeo Austral, Chile); Yau-De Huang (IoAaA); Chih-Wei L. Huang (IoAaA); Violette Impellizzeri (Observatorio de Leiden, Países Bajos; Observatorio Nacional de Radioastronomía, Charlottesville, EE.UU. [NRAOC]); Homin Jiang (IoAaA); Hao Jinchi (División de Investigación en sistemas Electrónicos, Instituto Nacional Chung-Shan de Ciencia y Tecnología, Taiwán, ROC); Taehyun Jung (KAaSSI); Juha Kallunki (Metsähovi); Petri Kirves (Metsähovi); Kimihiro Kimura (Agencia de Exploración Aeroespacial Japonesa, Japón); Jun Yi Koay (IoAaA); Patrick M. Koch (IoAaA); Carsten Kramer (IRAMF); Alex Kraus (MPIfR); Derek Kubo (IAAAS); Cheng-Yu Kuo (Universidad Nacional Sun Yat-Sen, Taiwán, ROC); Chao-Te Li (IoAaA); Lupin Chun-Che Lin (Departamento de Física, Universidad Nacional Cheng Kung, Taiwán, ROC); Ching-Tang Liu (IoAaA); Kuan-Yu Liu (IoAaA); Wen-Ping Lo (Departamento de Física, Universidad Nacional de Taiwán, Taiwán, ROC; IoAaA); Li-Ming Lu (Chung-Shan); Nicholas MacDonald (MPIfR); Pierre Martin-Cocher (IoAaA); Hugo Messias (Observatorio Conjunto ALMA, Chile; Osaka); Zheng Meyer-Zhao (Astron; IoAaA); Anthony Minter (Observatorio Green Bank, EE.UU.); Dhanya G. Nair (Departamento de Astronomía, Universidad de Concepción, Chile); Hiroaki Nishioka (IoAaA); Timothy J. Norton (Centro de Astrofísica | Harvard & Smithsonian, EE.UU. [CfA]); George Nystrom (IAAAS); Hideo Ogawa (Osaka); Peter Oshiro (IAAAS); Nimesh A. Patel (CfA); Ue-Li Pen (IoAaA); Yurii Pidopryhora (MPIfR; Instituto de Astronomía Argelander, Universidad de Bonn, Alemania); Nicolas Pradel (IoAaA); Philippe A. Raffin (IAAAS); Ramprasad Rao (CfA); Ignacio Ruiz (Instituto de Radioastronomía Milimétrica, Granada, España [IRAMS]); Salvador Sánchez (IRAMS); Paul Shaw (IoAaA); William Snow (IAAAS); T. K. Sridharan (NRAOC; CfA); Ranjani Srinivasan (CfA; IoAaA); Belén Tercero (Yebes); Pablo Torne (IRAMS); Thalia Traianou (IAA; MPIfR); Jan Wagner (MPIfR); Craig Walther (EAO); Ta-Shun Wei (IoAaA); Jun Yang (Chalmers); Chen-Yu Yu (IoAaA).
Esta investigación ha hecho uso de datos obtenidos con el Global Millimeter VLBI Array (GMVA), que consiste en telescopios operados por el Instituto Max-Planck de Radioastronomía (MPIfR), el Instituto de Radioastronomía Milimétrica (IRAM), el Observatorio Espacial de Onsala (OSO), el Radio Observatorio de Metsähovi (MRO), Yebes, la Red VLBI coreana (KVN), el Green Bank Telescope (GBT) y el Very Long Baseline Array (VLBA).
El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Consejo Nacional de Ciencia y Tecnología de Taiwán (NSTC), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).
La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Observatorio Conjunto ALMA (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.
La modernización, reconstrucción y funcionamiento del Telescopio de Groenlandia (GLT) están dirigidos por el Instituto de Astronomía y Astrofísica de la Academia Sinica (ASIAA) y el Observatorio Astrofísico Smithsonian (SAO).
Imágenes
Esta imagen muestra el chorro y la sombra del agujero negro del centro de la galaxia M87 juntos por primera vez. Las observaciones se obtuvieron con telescopios del Global Millimeter VLBI Array (GMVA), el Atacama Large Millimeter/submillimeter Array (ALMA) y el Telescopio de Groenlandia. Esta imagen da a los científicos el contexto necesario para entender cómo se forma el potente chorro. Las nuevas observaciones también revelaron que el anillo del agujero negro, destacado en el recuadro, es un 50% más grande que el anillo observado en longitudes de onda de radio más cortas por el Event Horizon Telescope (EHT). Esto sugiere que en la nueva imagen vemos más del material que está cayendo hacia el agujero negro de lo que podríamos ver con el EHT. Crédito: R.-S. Lu (SHAO), E. Ros (MPIfR), S. Dagnello (NRAO/AUI/NSF)Mientras observaban el núcleo de radio compacto de M87, un equipo científico ha descubierto nuevos detalles sobre el agujero negro supermasivo de la galaxia. En esta representación artística, el chorro masivo del agujero negro se ve elevándose desde el centro del agujero negro. Las observaciones en las que se basa esta ilustración representan la primera vez que el chorro y la sombra del agujero negro se han fotografiado juntos, proporcionando a la comunidad científica nuevos conocimientos sobre cómo los agujeros negros pueden lanzar estos potentes chorros. Crédito: S. Dagnello (NRAO/AUI/NSF)M87 es una enorme galaxia elíptica situada a unos 55 millones de años luz de la Tierra, visible en la constelación de Virgo. Esta imagen fue captada por el instrumento FORS2, instalado en el VLT (Very Large Telescope) de ESO, como parte del programa Joyas cósmicas de ESO, una iniciativa de divulgación que utiliza los telescopios de ESO para producir imágenes de objetos interesantes, enigmáticos o visualmente atractivos, con un fin educativo y divulgativo. El programa hace uso de tiempo de telescopio que no puede utilizarse para observaciones científicas, generando impresionantes imágenes de algunos de los objetos más sorprendentes en el cielo nocturno. En caso de que los datos obtenidos sean útiles para su uso científico en el futuro, estas observaciones se conservan y se ponen a disposición de los astrónomos a través de los archivos científicos de ESO. Crédito: ESOEste gráfico muestra la posición de la galaxia gigante Messier 87 en la constelación de Virgo (La Virgen). El mapa muestra la mayoría de las estrellas visibles a simple vista bajo buenas condiciones de observación. Crédito: ESO, IAU and Sky & Telescope
Video
Este video comienza con una vista de ALMA y luego se acerca al corazón de la galaxia M87, mostrando sucesivamente observaciones más detalladas. La imagen final muestra la sombra del agujero negro y un potente chorro que emana del propio agujero negro, juntos por primera vez en la misma imagen. Las observaciones se obtuvieron con telescopios del Global Millimeter VLBI Array (GMVA), ALMA, y el Telescopio de Groenlandia. Crédito:ESO/L. Calçada, Digitized Sky Survey 2, ESA/Hubble, RadioAstron, De Gasperin et al., Kim et al., R.-S. Lu (SHAO), E. Ros (MPIfR), S. Dagnello (NRAO/AUI/NSF). Music: astral electronic.
La observación del agua presente en el disco que se forma alrededor de la protoestrella V883 Ori ha aportado nuevas claves sobre los procesos de formación de los cometas y los planetesimales de nuestro propio Sistema Solar
Un equipo científico detectó agua en el disco circumestelar de una protoestrella cercana gracias al Atacama Large Millimeter/submillimeter Array (ALMA). Es la primera vez que se observa agua depositándose en un disco protoplanetario sin que se produzcan cambios significativos en su composición. Este hallazgo permite suponer que el agua presente en nuestro Sistema Solar se formó miles de millones de años antes que el Sol. Los resultados del estudio se publicaron hoy en la revista Nature.
V883 Orionis es una protoestrella situada a unos 1.305 años luz de la Tierra, en la constelación de Orión. Su observación permitió a la comunidad científica encontrar un vínculo probable entre el agua presente en el medio interestelar y el agua de nuestro Sistema Solar, al confirmarse que tienen una composición similar.
“Podemos pensar en la trayectoria del agua a través del Universo como un sendero. Conocemos los paraderos, que son los planetas y cometas donde hay agua, pero queríamos remontar su rastro hasta los orígenes del agua”, cuenta John Tobin, astrónomo del Observatorio Radioastronómico Nacional (NRAO, en su sigla en inglés) de la Fundación Nacional de Ciencia de Estados Unidos (NSF) y autor principal del artículo. “Hasta ahora, podíamos relacionar la Tierra con los cometas y las protoestrellas con el medio interestelar, pero no podíamos establecer un vínculo entre las protoestrellas y los cometas. Eso cambió con V883 Ori, y ahora sabemos que las moléculas de agua de ese sistema y las de nuestro Sistema Solar tienen proporciones similares de deuterio e hidrógeno”.
Observar agua en los discos circumestelares de las protoestrellas es una tarea compleja, puesto que en la mayoría de los sistemas el agua se encuentra congelada. Al observar protoestrellas, la comunidad científica busca líneas de nieve, o líneas de hielo, donde el agua hace la transición entre el hielo y el gas, que se puede observar en mayor detalle mediante radioastronomía. “Si la línea de nieve está demasiado cerca de la estrella, no hay agua suficiente en estado gaseoso como para detectarla fácilmente, y el polvo del disco puede tapar buena parte de las emisiones del agua. Si la línea de nieve se encuentra lo suficientemente lejos de la estrella, puede haber vapor de agua detectable, y eso es lo que se ha observado en V883 Ori”, explica John Tobin, quien agrega que esta investigación solo fue posible gracias a esta característica única de la protoestrella.
El disco de V883 Ori es bastante masivo y tiene la temperatura justa que permite que el agua pase de estado sólido a gaseoso, de ahí que sea ideal para estudiar el crecimiento y la evolución de los sistemas solares en longitudes de onda de radio.
“Esta observación demuestra la extraordinaria capacidad que tiene ALMA para estudiar algo tan importante para la vida en la Tierra: el agua”, celebra Joe Pesce, Program Officer de la NSF para ALMA. “Dilucidar procesos importantes para la vida en la Tierra observándolos en regiones más distantes de la galaxia también nos ayuda a entender mejor cómo funciona la naturaleza en general y conocer los procesos que permitieron a nuestro Sistema Solar convertirse en lo que es hoy”.
Para establecer una relación entre el agua del disco protoplanetario de V883 Ori y el agua de nuestro Sistema Solar, el equipo de investigación estudió su composición usando los receptores ultrasensibles de Banda 5 (1,6 mm) y Banda 6 (1,3 mm) y descubrió que su composición se mantiene relativamente inalterada en cada etapa de formación de un sistema solar: de la protoestrella al disco protoplanetario y los cometas. “Esto significa que el agua de nuestro Sistema Solar se formó mucho antes que el Sol, los planetas y los cometas. Ya sabíamos que hay mucha agua en el medio interestelar. Los resultados obtenidos ahora demuestran que esa agua se incorporó directamente al Sistema Solar durante su formación”, afirma Merel van ‘t Hoff, astrónoma de la Universidad de Michigan y coautora del artículo. “Esto es muy emocionante, porque es un indicio de que otro sistemas planetarios también deben de haber recibido grandes cantidades de agua”.
Es fundamental entender bien el papel del agua en el desarrollo de cometas y planetesimales para saber cómo se formó exactamente nuestro propio Sistema Solar. Aunque se cree que el Sol se formó en un denso cúmulo de estrellas, mientras que V883 Ori se encuentra relativamente aislada, en una zona sin estrellas, los dos astros tienen una característica fundamental en común: ambos se formaron en nubes moleculares gigantes.
“Sabemos que la mayor parte del agua del medio interestelar se deposita en forma de hielo en la superficie de diminutos granos de polvo presentes en las nubes. Cuando estas nubes colapsan por efecto de su propia gravedad y forman nuevas estrellas, el agua se deposita en los discos que las rodean. Con el tiempo, los discos evolucionan y los granos de polvo congelados se aglomeran hasta formar un sistema solar con planetas y cometas”, explica Margot Leemker, astrónoma de la Universidad de Leiden y coautora del artículo. “Hemos demostrado que el agua que se forma en las nubes pasa por estas etapas prácticamente sin alterarse. De esa forma, al analizar el agua del disco V883 Ori, básicamente miramos hacia el pasado y vemos cómo era nuestro propio Sistema Solar en su juventud. John Tobin agrega: “Hasta ahora la cadena evolutiva del agua en nuestro Sistema Solar estaba incompleta. V883 Ori aportó el eslabón faltante, y ahora conocemos todo el linaje del agua, desde los cometas y las protoestrellas hasta el medio interestelar”.
Información adicional
“Deuterium-enriched water ties planet-forming disks to comets and protostars” (‘Agua rica en deuterio permite relacionar discos protoplanetarios con cometas y protoestrellas’), J. Tobin et al., 8 de marzo de 2023, Nature, https://doi.org/10.1038/s41586-022-05676-z
El Atacama Large Millimeter/submillimeter Array (ALMA), una instalación astronómica internacional, es una asociación entre el Observatorio Europeo Austral (ESO), la Fundación Nacional de Ciencia de EE. UU. (NSF) y los Institutos Nacionales de Ciencias Naturales de Japón (NINS) en cooperación con la República de Chile. ALMA es financiado por ESO en representación de sus estados miembros, por NSF en cooperación con el Consejo Nacional de Investigaciones de Canadá (NRC) y el Consejo Nacional de Ciencia y Tecnología de Taiwán (NSTC), y por NINS en cooperación con la Academia Sinica (AS) de Taiwán y el Instituto de Ciencias Astronómicas y Espaciales de Corea del Sur (KASI).
La construcción y las operaciones de ALMA son conducidas por ESO en nombre de sus estados miembros; por el Observatorio Radioastronómico Nacional (NRAO), gestionado por Associated Universities, Inc. (AUI), en representación de Norteamérica; y por el Observatorio Astronómico Nacional de Japón (NAOJ) en nombre de Asia del Este. El Joint ALMA Observatory (JAO) tiene a su cargo la dirección general y la gestión de la construcción, así como la puesta en marcha y las operaciones de ALMA.
Imágenes
V883 Ori es una protoestrella única, cuya temperatura es perfecta para que el agua del disco circumestelar se convierta en gas, lo que permite a la comunidad radioastronómica rastrear los orígenes del agua. Las nuevas observaciones realizadas con el Atacama Large Millimeter/submillimeter Array (ALMA) aportaron los primeros indicios que permiten suponer que el agua de nuestro Sistema Solar proviene del mismo lugar que el agua presente en los discos de las demás protoestrellas del Universo: el medio interestelar. ALMA (ESO/NAOJ/NRAO), B. Saxton (NRAO/AUI/NSF)
El agua de los discos circumestelares que rodean las protoestrellas suele estar congelada y a veces se extiende a lo largo de grandes distancias, alejándose de la estrella. En el caso de V883 Ori, la línea de nieve se extiende por 80 UA desde la estrella, es decir, cerca de 80 veces la distancia que separa la Tierra del Sol. No obstante, la temperatura de V883 Ori es lo suficientemente elevada como para que buena parte del hielo del disco se convierta en gas, que los instrumentos radioastronómicos son capaces de observar en detalle. Las nuevas observaciones realizadas con el Atacama Large Millimeter/submillimeter Array (ALMA) revelaron que el agua del disco de V883 Ori tiene la misma composición básica que el agua presente en los astros de nuestro Sistema Solar. De esto se desprende que el agua de nuestro Sistema Solar se formó miles de millones de años antes que el Sol, en el medio interestelar.
Créditos: ALMA (ESO/NAOJ/NRAO), J. Tobin, B.Saxton (NRAO/AUI/NSF)
Mientras estudiaba los orígenes del agua de nuestro Sistema Solar, un equipo científico observó V883 Orionis, una protoestrella única situada a 1.305 años luz de la Tierra. A diferencia de lo que ocurre en otras protoestrellas, el disco circumestelar de V883 Ori tiene una temperatura que convirtió el agua en gas, lo que permite a la comunidad científica estudiar su composición usando radiotelescopios como el Atacama Large Millimeter/submillimeter Array (ALMA). Las radioobservaciones de la protoestrella revelaron la presencia de gas molecular (en azul), agua (naranja) y continuo de polvo (verde), de lo cual se desprende que el agua de esta protoestrella es extremadamente similar al agua presente en astros de nuestro Sistema Solar y podría tener orígenes similares. ALMA (ESO/NAOJ/NRAO), J. Tobin, B. Saxton (NRAO/AUI/NSF)V883 Orionis es una protoestrella situada a unos 1.305 años luz de la Tierra, en la constelación de Orión. UAI/Sky & Telescope